Accelerated Aging Test

Tim Loeffler
Global Vegetable Seed Production Projects
February 2020
Agenda

1. Background and Principles
2. Equipment and Supplies
3. Procedures
4. Considerations related to Precision
5. Interpretation of Results
Background and Principles

- **Background**
 - Utilizes same environmental factors impacting seed deterioration
 - Temperature
 - Relative Humidity
 - Duration
 - Initially developed to estimate seed longevity to predict storage of soybeans
 - Test has been expanded to several crops
 - Approved by ISTA for soybeans
Background and Principles

• Principles
 – Seed is exposed to high temperature and relative humidity for a short period of time.
 – The seed aging process becomes “accelerated” causing deterioration.
 – Seeds are subjected to the standard germination test and evaluated for normal seedlings.
 – High vigour seed lots demonstrate higher germination following aging.
 – Lower vigour seed lots have lower germination following aging.
Materials and Supplies

- Analytical balance – weigh to 0.001 g
- Plastic AA boxes
- Seed Moisture Containers – as described by ISTA
- Distilled or deionized water source.
- Dispenser with range from 0 – 100 ml for water.
- AA Chamber
- NIST Thermometer
- Germination testing facilities
 - With equipment, supplies and capability for standard germination (ISTA, 1999).
Materials and Supplies

• Plastic AA Boxes
 – With lids
 – 11.0 x 11.0 x 3.5 cm
 – Wire trays, 10.0 x 10.0 x 3.0 cm
 – Available commercially
 • Hoffman Mfg.
Materials and Supplies

- **AA Chamber**
 - Water jacketed
 - Must maintain temperature +/- 0.3°C
 - Desired range of 41 – 45°C, depending on species.
 - Plastic or stainless steel tray to be placed at bottom of chamber with distilled water.
Materials and Supplies

- Multiple chambers
 - May be required for higher capacity
 - Can designate different temperatures.
Procedures – Preparation

1. Set temperature and preheat chamber to precise temperature.
 - Add distilled or deionized water in bottom tray (4 cm depth)
 - Use NIST thermometer to confirm temperature
 - Confirm temperature is maintained for 24-48 hours

2. Thoroughly wash AA boxes, lids and screens
 - Use a 15% hypochlorite solution
 - Wash and dry before each use
 - Can use a commercial dishwasher

3. Determine initial seed moisture content of seed lots.
 - Moisture range should be 10-14%.
 - Refer to ISTA Handbook to adjust as needed
Procedures – Filling Boxes

4. Dispense 40 ml of distilled or deionized water in each plastic box
 • Insert screens in each box
 • Avoid splashing any water on surface of the screens

5. Weigh seed and place on screen for each AA box.
 • For soybeans, this 42 g (~ 200 seeds)
 • Use more than one AA box for large seeded seed lots
 • Level seeds to a one layer depth
 • Include one “control sample” to check for seed moisture after the aging period

6. Place lids on each AA box
 • Lids should fit firmly
 • Replace any warped lids
Procedures – Placement in Chamber

7. Arrange boxes on tray and transfer to the AA Chamber
 • Allow at least 2.5 cm between each box for air movement
 • Avoid splashing any water on the screen surface
 • Place only one or two screens containing the AA boxes in the middle or upper portion of the chamber
 • Record the exact time when AA boxes are placed in the chamber
 • Close the door and do not open it until the end of the aging period

8. Monitor the temperature during the aging period
 • Maintain temperature at +/- 0.3C
 • Confirm temperature has been maintained during the aging period
8. After the aging period, remove AA boxes from the chamber
 • Remove the trays (i.e. 72 hours, +/- 15 min.)
 • Leave lids on each box until the aged seed is planted
 • Remove the screens with the seed from the AA box
 • Planting should be completed within 1-2 hours after removal from the chamber
 • Weigh the control sample of the imbibed seed and compare to target range for species

9. Proceed to plant the aged seed following ISTA Rules.
 • Refer to ISTA Handbook and adjust as needed

10. For many seed lots, stagger the placement of samples into the AA Chamber in 1-2 hour intervals
 • Use separate aging chambers
Control Sample – After Aging Seed Weights

<table>
<thead>
<tr>
<th>Species</th>
<th>Seed Wt</th>
<th>Aging Temp</th>
<th>Duration</th>
<th>M% after Aging</th>
<th>Seed Weight Range After Aging (10% M)</th>
<th>Seed Weight After Aging (14% M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soybean</td>
<td>42 g</td>
<td>41C</td>
<td>72 h</td>
<td>27-30%</td>
<td>51.8 – 54.0 g</td>
<td>49.5 – 51.6 g</td>
</tr>
<tr>
<td>Corn, Field</td>
<td>40 g</td>
<td>43C</td>
<td>72 h</td>
<td>26-29%</td>
<td>49.3 – 51.5 g</td>
<td>47.1 – 49.1 g</td>
</tr>
</tbody>
</table>

- **Seed Moisture Calculation (10-14%):**
 - \((100 – \text{initial seed MC} / 100 – \text{desired MC}) \times \text{weight of sample}\)
Procedures – Standard Germination

11. Complete test according to ISTA Rules
12. Evaluate test according to ISTA Rules
Relationship with Field Emergence

Correlation Coefficients of SG and AA results and with 25 Field Emergence trials over 10 years

<table>
<thead>
<tr>
<th>Year</th>
<th>Seed Lots</th>
<th>1st Planting</th>
<th>2nd Planting</th>
<th>3rd Planting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SG</td>
<td>AA</td>
<td>SG</td>
</tr>
<tr>
<td>1980</td>
<td>40</td>
<td>0.45</td>
<td>0.90</td>
<td>0.60</td>
</tr>
<tr>
<td>1981</td>
<td>52</td>
<td>0.28</td>
<td>0.66</td>
<td>0.27</td>
</tr>
<tr>
<td>1984</td>
<td>29</td>
<td>0.41</td>
<td>0.64</td>
<td>0.59</td>
</tr>
<tr>
<td>1985</td>
<td>12</td>
<td>0.85</td>
<td>0.40</td>
<td>0.82</td>
</tr>
<tr>
<td>1987</td>
<td>16</td>
<td>0.90</td>
<td>0.88</td>
<td>0.87</td>
</tr>
<tr>
<td>1988</td>
<td>33</td>
<td>0.84</td>
<td>0.80</td>
<td>0.85</td>
</tr>
<tr>
<td>1989</td>
<td>17</td>
<td>0.69</td>
<td>0.62</td>
<td>0.88</td>
</tr>
<tr>
<td>1991</td>
<td>15</td>
<td>0.09</td>
<td>0.74</td>
<td>0.48</td>
</tr>
<tr>
<td>1992</td>
<td>38</td>
<td>0.58</td>
<td>0.90</td>
<td>0.52</td>
</tr>
<tr>
<td>1993</td>
<td>20</td>
<td>0.89</td>
<td>0.91</td>
<td>-</td>
</tr>
</tbody>
</table>
Interpretation of Results

- Results are not “absolute”

- Rank seed lots to make decisions
 - Consider
 - Standard germination
 - Age of seed
 - Expected market conditions

- Relationship with field emergence.
 - Hampton and TeKrony, 1995
 - Egli and TeKrony, 1995, 1996
 - Wolz and TeKrony, 2001
 - Torres, Vieira and Panobianco, 2004

- Relationship with storage potential
 - Delouche and Baskin, 1973
 - Hampton and TeKrony, 1995

Correlation Coefficients (r^2) among Accelerated Aging test results and Field Emergence over Three Years*

<table>
<thead>
<tr>
<th>Planting</th>
<th>1993</th>
<th>1994</th>
<th>1997</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Planting</td>
<td>0.50**</td>
<td>0.50**</td>
<td>0.77**</td>
</tr>
<tr>
<td>2nd Planting</td>
<td>0.76**</td>
<td>0.74**</td>
<td>0.80**</td>
</tr>
<tr>
<td>3rd Planting</td>
<td>0.71**</td>
<td>0.72**</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Precision in the AA test is critical

- Why is “Precision” important?
 - Changes in seed vigour can occur rapidly
 - Small changes in aging conditions can have a major changes in results.
 - Improper equipment and supplies will influence results
Considerations related to Precision

- Water Jacketed Chamber – is it needed?

AA Results for three types of chambers

<table>
<thead>
<tr>
<th>Seed Lot</th>
<th>Water-Jacketed</th>
<th>Dry Incubator</th>
<th>Immersed Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>96</td>
<td>95</td>
<td>96</td>
</tr>
<tr>
<td>2</td>
<td>94</td>
<td>94</td>
<td>92</td>
</tr>
<tr>
<td>3</td>
<td>85</td>
<td>82</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>85</td>
<td>83</td>
<td>82</td>
</tr>
<tr>
<td>5</td>
<td>52</td>
<td>73</td>
<td>48</td>
</tr>
<tr>
<td>6</td>
<td>22</td>
<td>66</td>
<td>38</td>
</tr>
<tr>
<td>Mean</td>
<td>72</td>
<td>82</td>
<td>72</td>
</tr>
</tbody>
</table>

- Use a water-jacketed aging chamber to promote precise temperature control.
- Severe condensation occurs in the chamber with the immersed heating element resulting in higher seed moisture and lower results.
Considerations related to Precision

• How important is temperature control?

Monthly germination after following storage at 10C and aged at 41C for 72 hours

<table>
<thead>
<tr>
<th>Seed Lot</th>
<th>Feb</th>
<th>Mar</th>
<th>April</th>
<th>June</th>
<th>July</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>86</td>
<td>82</td>
<td>86</td>
<td>91</td>
<td>91</td>
<td>87</td>
</tr>
<tr>
<td>2</td>
<td>68</td>
<td>70</td>
<td>60</td>
<td>84</td>
<td>66</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>90</td>
<td>93</td>
<td>89</td>
<td>92</td>
<td>83</td>
<td>89</td>
</tr>
<tr>
<td>4</td>
<td>84</td>
<td>83</td>
<td>89</td>
<td>96</td>
<td>89</td>
<td>88</td>
</tr>
<tr>
<td>Mean</td>
<td>82</td>
<td>82</td>
<td>81</td>
<td>91</td>
<td>82</td>
<td></td>
</tr>
</tbody>
</table>

– Water-jacketed aging chamber provided repeatable results with exception of month of June.
– Chamber temperature declined to 40.5C in June which contributed to significantly higher results.
– Chamber temperature must be maintained +/- 0.3C
Considerations related to Precision

• Why use seed weight rather than seed number?

Effect of seed size on seed moisture content after aging

<table>
<thead>
<tr>
<th>Seed Size (mg/seed)</th>
<th>40 g</th>
<th>200 Seeds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Seed No.</td>
<td>SMC %</td>
</tr>
<tr>
<td>112</td>
<td>357</td>
<td>33.3</td>
</tr>
<tr>
<td>163</td>
<td>248</td>
<td>32.7</td>
</tr>
<tr>
<td>225</td>
<td>178</td>
<td>33.0</td>
</tr>
<tr>
<td>297</td>
<td>135</td>
<td>31.2</td>
</tr>
<tr>
<td>LSD (P=0.5)</td>
<td>NS</td>
<td></td>
</tr>
</tbody>
</table>

- Using 40 g provides consistent seed moistures after aging.
- Using seed consistent seed number (200) leads to lower seed moisture after aging as seed size increases, thus influencing results.
Considerations related to Precision

- What is impact of opening the door during the aging period?

<table>
<thead>
<tr>
<th>Door Open (min)</th>
<th># Trays</th>
<th>Boxes / Tray</th>
<th>Box (°C)</th>
<th>Chamber (°C)</th>
<th>Box (Min)</th>
<th>Chamber (Min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>5</td>
<td>3</td>
<td>0.4</td>
<td>3.4</td>
<td>160</td>
<td>84</td>
</tr>
<tr>
<td>1.0</td>
<td>5</td>
<td>9</td>
<td>0.4</td>
<td>4.2</td>
<td>140</td>
<td>105</td>
</tr>
</tbody>
</table>

- Opening door reduces the time at the desired temperature for aging
Considerations related to Precision

- Effect of planting delays following aging on AA germination

<table>
<thead>
<tr>
<th>Seed Lot</th>
<th>Lids on 0 h</th>
<th>Lids on 2 h</th>
<th>Lids on 4 h</th>
<th>Lids Off 2 h</th>
<th>Lids Off 4 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>74</td>
<td>68</td>
<td>71</td>
<td>70</td>
<td>59*</td>
</tr>
<tr>
<td>2</td>
<td>84</td>
<td>83</td>
<td>77</td>
<td>81</td>
<td>60*</td>
</tr>
<tr>
<td>3</td>
<td>93</td>
<td>90</td>
<td>89</td>
<td>88</td>
<td>86</td>
</tr>
</tbody>
</table>

- Keep lids on after the aging period until the seed is planted
- Plant within 2 hours after the aging period.
Considerations related to Precision

- Effect of seed treatment on AA germination

<table>
<thead>
<tr>
<th></th>
<th>Seed Lot 1</th>
<th></th>
<th>Seed Lot 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aging Temp</td>
<td>Untreated</td>
<td>Treated</td>
<td>Untreated</td>
<td>Treated</td>
</tr>
<tr>
<td>41 °C</td>
<td>84</td>
<td>86</td>
<td>81</td>
<td>82</td>
</tr>
</tbody>
</table>

- LSD @ 0.5 = 7.16
Considerations related to Precision

• Key points:
 – Maintain uniform temperature within the chamber
 • Temperature variation should be no more than +/- 0.3C
 – High humidity should be maintained within the chamber to minimize evaporation from the AA boxes.
 – Use a water-jacketed aging chamber to promote precise temperature control.
 • It is critical to avoid condensation within the aging boxes
 • Keep door closed during the aging period
Equipment Sources

- Hoffman Manufacturing
 - sales@hoffmanmfg.com
 - Basic Water-Jacketed CO2 Incubator SC06WE / SC06WE2
 - Single unit: $5200 - $5600 USD
 - CO2 Water Jacketed Incubator SCO5W
 - Single unit - $6,033 USD
 - Dual unit – $13,500 USD

- Sheldon Manufacturing, Inc.
 - sheldonmanufacturing.com
 - Same as above

- VWR International
 - vwr.com
 - VWR® Water Jacketed CO2 Incubators
 - Single unit: $8382 - $9203 USD
 - Dual units: $16,707 - $18,349 USD
Thank You for your Attention!